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Abstract

This study deals with the vibration localization in plates rib-stiffened in two orthogonal directions.
The effect of small misplacements of stiffeners, with various combinations of flexural and torsional
rigidities, on both the free vibration modes and forced vibration responses of a plate clamped at
four edges is presented. An extended finite strip approach, or the compound strip method, is employed
to obtain the natural frequencies and the corresponding vibration modes. Galerkin’s method is applied
to determine the forced vibration response of the rib-stiffened plate subjected to a harmonic
concentrated load at the center of one of its four panels. It is observed that a small disorder of the
rib-stiffeners may significantly affect the vibration localization of the whole plate. By deliberately
introducing irregularity into the stiffeners, the vibration magnitudes of some of the panels of the plate
may be reduced.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that small deviations of periodicity in large periodic engineering
structures, such as stiffened plates, have dramatic effects on their dynamical properties and
lead to the localization of vibration, in which vibration is confined in a small region close to the
source of vibration. Furthermore, a periodic structure may be purposely disordered so that the
localization behavior can be used to serve as a damping mechanism. Although disorder and
dissipation both result in a spatial decay of the amplitude, the localization and damping
mechanisms are intrinsically distinct. For localization the vibration energy is confined in a small
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region near the source of excitation by disorder, while for damping the energy is dissipated as it
propagates.
Localization phenomenon was first discovered by P.W. Anderson in 1958 in the field of solid

state physics. The study of its occurrence has been investigated by many researchers during the
past four decades. The first known research on localization phenomenon in the area of structural
dynamics was done by Hodges [1], who evidenced this phenomenon in structural dynamics by
both theoretical investigation and experimental demonstration [2]. Since then, the problem of
localization has stimulated a number of structural dynamicists. A detailed review on vibration
localization can be found in Ref. [3] and in the papers in the special issue on ‘‘Localization in
Engineering Problems’’ [4].
The localization phenomenon in disordered engineering structures can have either beneficial or

harmful effects.
Localization of vibration is important because the dynamic response of a disordered system

may be considerably higher than that of a perfect system, leading to higher vibration levels and
larger stresses. It has been found that the small differences in the structural or inertial properties
of a structure can affect the amplitudes of individual substructures by several hundred percent,
which can result in structural failure [5]. Since localization occurs even for small deviations of
periodicity in the structure, prediction of the response of a disordered structure is particularly
important. In fact, disorder played an important role in several costly failures in the development
and production of modern aircraft turbofan engines [6]. In these cases, vibration localization has a
detrimental effect on the performance of the structures.
In the Steel Design Guide Series 11: Floor Vibrations Due to Human Activity by the American

Institute of Steel Construction [7], the following problem is described. Extremely annoying floor
vibrations sometimes occur in large open floor areas where the floor is supported by identical,
equally and closely spaced joists and beams. The sensation is ‘‘wave-like’’ with waves rolling back
and forth across the width of the building. Also, because of the transmission of the vibration, an
occupant who is unaware of the cause of the motion is suddenly subjected to significant motion
and may be particularly annoyed. Vibration transmission of this type can be reduced, if not
eliminated, by changing the stiffness of some of the joist members, say at the column lines, or by
changing the spacing in alternate bays.
Although the design guide did not identify this as a localization problem and only provided

solutions from experience, this is actually an example in which localization in vibration
propagation is beneficial. By purposely interrupting the periodicity of the floor system, the
amplitudes of propagating waves due to impact will be localized in the vicinity of the point of
impact or the amplitudes of vibration will decay exponentially from the point of impact.
In this paper, the vibration localization of plates with intermediate rib-stiffeners in two

orthogonal directions is investigated. The dynamic response of such plates under harmonic
excitation is of great importance in various engineering structures such as ship superstructures,
bridge decks, ribbed floors, aircraft, and space structures.
Generally, studies of dynamic behavior of stiffened plates may be classified into two

approaches. One basic approach is to represent the stiffened plate by an equivalent orthotropic
plate of constant thickness having the same stiffness characteristics. However, the actual
structural behavior of the stiffened plate cannot be completely replaced by that of an orthotropic
plate. When the stiffeners have different cross-section properties or are unequally spaced, which
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is of the case of the current study, the orthotropic plate idealization is no longer applicable.
Furthermore, this approach cannot be expected to yield good results for cases with large stiffener
spacings.
Another more realistic approach treats the contribution of the plate and stiffeners

separately, see, e.g., Ref. [8], in which the free and forced vibrations of elastically cross-supported
rectangular plates with viscoelastic edge conditions were considered. However, the formulation
presented in Ref. [8] is not applicable to plate with rib-stiffeners, since a rib-stiffened plate
differs from a spring-supported plate by the fact that the rib-stiffeners have mass while the springs
do not.
On the other hand, applying compound strip method [9] and Galerkin’s method to study

vibration localization of these plates is simple, less demanding on computer time, and can be
easily formulated. Since building floors may be modelled as plates stiffened in two orthogonal
directions, it is important to study in detail the vibration behavior of disordered plates with
intermediate stiffeners. The current approach emphasizes the effect of misplacements of stiffeners
on vibration response, i.e., vibration localization.

2. Vibration mode localization by the compound strip method

2.1. Assembly of stiffness and mass matrices

Consider a uniform rectangular plate of length L; width b; and thickness h; which is stiffened
by two intermediate rib-stiffeners in two orthogonal directions as shown in Fig. 1. Suppose the
plate is clamped at its four edges without loss of generality. An extended finite strip method,
the compound strip method, is employed to study the free vibration of the four-panel plate.
For completeness of the paper, an introduction to the compound strip method is given in
Appendix A.
Each span of the stiffened plate in the x direction is divided into M strips of equal width as

shown in Fig. 2, i.e., for Span 1 of width L1; l11 ¼ l12 ¼ ? ¼ l1M ¼ L1=M; and for Span 2 of
width L2; l21 ¼ l22 ¼ ? ¼ l2M ¼ L2=M; where lij denotes the width of the jth strip of the ith span.
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Fig. 1. A four-panel rectangular plate.
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It is well known that the dynamic equilibrium equation of any linear elastic structure
in free vibration is given by ðK� o2MÞu ¼ 0; where o is the natural frequency, K is the overall
stiffness matrix of the structure, M is the overall mass matrix, and u is the nodal displacement
vector.
Assembling the non-dimensional stiffness and the mass matrices for the whole plate shown in

Fig. 1, the non-dimensional equations of motion are given by

ð #K� m #MÞ#u ¼ 0; ð1Þ

where m is the non-dimensional frequency of the plate defined in Eqs. (A.3) in Appendix A. The
non-dimensional overall stiffness matrix is given by

#K ¼

½ #K11�11 ½ #K12�11

½ #K21�11 ½ #K�12 ½ #K12�12

& & &

½ #K21�1ðN�1Þ ½ #K�1N ½ #K12�1N

½ #K21�1N ½ #Kc�21 ½ #K12�21

½ #K21�21 ½ #K�22 ½ #K12�22

& & &

½ #K21�2ðN�1Þ ½ #K�2N ½ #K12�2N

½ #K21�2N ½ #K22�2N

2
6666666666666666664

3
7777777777777777775

;

in which, for i ¼ 1; 2; j ¼ 1; 2;y;N;

½ #K�ij ¼ ½ #K22�iðj�1Þ þ ½ #K11�ij; ½ #Kc�21 ¼ ½ #K22�1N þ ½ #K11�21 þ ½LS #K�2111;
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and in which p; q ¼ 1; 2; r is the largest term of Fourier series used in the analysis, LS #Kij
mn is a 2� 2

matrix given in Eq. (A.6) in Appendix A, and

½ #K11�ijmn ¼
#K

ij
1;mn

#K
ij
2;mn

#K
ij
2;mn

#K
ij
5;mn

" #
; ½ #K22�ijmn ¼

#K
ij
1;mn � #K

ij
2;mn

� #K
ij
2;mn

#K
ij
6;mn

" #
;

½ #K12�ijmn ¼ð½ #K21�ijmnÞ
T ¼

#K
ij
3;mn

#K
ij
4;mn

� #K
ij
4;mn

#K
ij
5;mn

" #
;

in which #K
ij
l;mn; l ¼ 1; 2;y; 6 are given in Eq. (A.4). The overall mass matrix for the whole plate #M

in Eq. (1), the elements of which are given in Eqs. (A.5) and (A.7), can be assembled in exactly the
same way as the overall stiffness matrix #K: It is noted that both matrices #K and #M are symmetric.
The non-dimensional displacement vector of plate #u is given by

#u ¼ f#u11; #u12;y; #u1N ; #u21; #u22;y; #u2N ; #u31gT;

#uij ¼ f#uij
1 ; #u

ij
2 ;y; #uij

r g
T; #uij

m ¼ f #oij
m;

#yij
mg

T;

where #oij
m and #yij

m are given in Eq. (A.3). Boundary conditions at edges x ¼ 0 and x ¼ L can be
introduced after or prior to the assembly of #K; #M and #u; while boundary conditions at edges y ¼ 0
and y ¼ b have already been considered in the elements of matrices #K; #M:
The above assembly of matrices is illustrated for a 4-panel plate with only two orthogonal

stiffeners. The stiffness and mass matrices can be assembled in a similar way for a plate with more
than two orthogonal stiffeners, say, a 9-panel plate with two orthogonal stiffeners in each
direction.
It is noteworthy that the treatment of the longitudinal stiffener in this paper is somewhat

different from that in Ref. [10]. In the current approach the longitudinal stiffener is considered
separately from the plate and the contribution of the longitudinal stiffener to the structural
behavior of the whole plate is considered in ½ #Kc� and ½ #Mc�; while in Ref. [10] the longitudinal
stiffener is considered in Eqs. (A.4) and (A.5) in a similar way as for the transverse stiffener. The
current approach requires that one of the nodal lines of the finite strip division of the plate be
placed on the longitudinal stiffener, while in Ref. [10] there is no such restriction and
the longitudinal stiffener can be placed between two nodal lines. However, it is expected that the
current approach is more accurate since the deflection of the longitudinal stiffener is exactly
the same as only one nodal line that goes through the stiffener, while in Ref. [10] the deflection of
the longitudinal stiffener depends on two nodal lines. Moreover, the position of the longitudinal
stiffener is easier and clearer to locate in the current approach. In Ref. [10] the position of the
longitudinal stiffener would jump from strip to strip when misplacement of the stiffener is
introduced. Since the position of the stiffener is important in the localization analysis, the current
approach has some advantages over that of Ref. [10].
The eigenvalue problem (1) can be solved by standard techniques. The mth eigenvalue mm

corresponds to the natural frequency of the mth vibration mode of the plate. Knowing the
eigenvalue mm and the associated eigenvector #um; the corresponding vibration mode of the plate
Fmðx; yÞ can then be determined from Eq. (A.1).
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2.2. Numerical results

The variation of the free vibration mode shapes with small misplacements of the two
intermediate stiffeners is of interest. Assume that the misplacements of the intermediate stiffeners
are dx and dy in the x and y directions, respectively, such that L1 ¼ L=2þ dx; L2 ¼ L=2� dx;
b1 ¼ b=2þ dy; and b2 ¼ b=2� dy: The non-dimensional misplacements can be denoted by dx ¼
dx=b and dy ¼ dy=b:
For simplifying the presentation, if the two stiffeners are identical, their parameter subscripts

TS; LS; x; and y will be replaced by S or dropped, e.g., oS for the flexural rigidity, tS for the
torsional rigidity, dS for the misplacement of the stiffeners, #mw for the mass, and #my for the mass
moment of inertia. The subscript S has double meanings, Stiffener and Same in two directions.
To verify the natural frequencies and mode shapes of the free vibration of a four-panel plate,

with different values of misplacements of the intermediate stiffeners, obtained using the
compound strip method presented in this section, the results are compared with those obtained
using a finite element method, STARDYNE. It is observed that the numerical results of both
methods agree very well, even for much higher modes. Hence, the formulations using compound
strip method are suitable for the study of vibration mode localization of the four-panel stiffened
plate.

2.2.1. Vibration mode localization
In Fig. 3, the first mode of a plate with four edges clamped, L=b ¼ 1=1; oS ¼ 20; tS ¼ 0:1;

#mw ¼ 0:1; and #my ¼ 0:0 are plotted in (a) for dx ¼ dy ¼ 0 and in (b) for dx ¼ 0:01; dy ¼ �0:05:
When the plate is perfectly periodic, i.e., dx ¼ dy ¼ 0; the vibration mode is symmetric about the
stiffeners; the amplitudes of vibration in all four panels are the same. When the intermediate
stiffeners are misplaced slightly, the localization in the vibration mode can be clearly seen—
vibration is mostly confined to one panel.
The vibration mode localization may be characterized by the ratios r11;kl of the maximum

deflections of the centers of the four panels, i.e.,

r11;22 ¼
jzð11Þjmax

jzð22Þjmax

; r11;12 ¼
jzð11Þjmax

jzð12Þjmax

; r11;21 ¼
jzð11Þjmax

jzð21Þjmax

: ð2Þ

If r11;kl is close to 1, the maximum deflections in the two panels compared are comparable;
whereas when r11;kl{1 or r11;klc1; the maximum deflections in the two panels compared are
significantly different and deformation is confined, i.e., the vibration mode is localized.
The value of the non-dimensional quantity #my; which is related to the mass moment of inertia of

stiffeners, is usually very small (less than the order of 10�4). It is observed that, in a realistic range,
#my has little effect on r11;kl : Hence, #my ¼ 0 is taken in the remainder of this paper unless specified.
The vibration mode localization indicators r11;kl of a four-panel square plate are plotted in

Figs. 4–11 as functions of the major parameters of the stiffeners, i.e., the flexural rigidity oS; the
torsional rigidity tS; the mass #mw; and the misplacements dx and dy: Some selected mode shapes
are also presented in each figure to illustrate the turns and jumps of r11;kl : When the stiffened
square plate is symmetric about x ¼ y; r11;12 is the same as r11;21: When the flexural rigidity of the
stiffeners oS is very large, the stiffened plate can be considered as simply supported at the
stiffeners.
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r11;kl versus oS and #mw: Ratio r11;22 of the first and the second vibration modes of a four-panel
square plate with dS ¼ 0:01 and tS ¼ 0:1 are plotted versus oS from 0 to 100 and #mw from 0 to 1
in Figs. 4 and 5, respectively.
It is seen in Fig. 4 that the mass of the stiffener #mw has little effect on ratio r11;22 of the first

mode when oSo10 or oS > 50; i.e., r11;22 do not change much with the change of oS in these
ranges. When oS is large, the small effect of #mw is expected since the mass of the stiffener has no
effect at all on the vibration behavior of the plate if the plate is simply supported at the stiffener.
However, the flexural rigidity oS of the stiffeners has dramatic effects on r11;22; especially

for the higher modes as seen in Fig. 5. When oS-0; the mode shapes are similar to those of a
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Fig. 3. The first vibration mode for a four-panel square plate with oS ¼ 20; tS ¼ 0:1; #mw ¼ 0:1; #my ¼ 0:0: (a) dx ¼
dy ¼ 0:0; (b) dx ¼ 0:01 and dy ¼ �0:05:
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one-panel plate. When oS-N; the mode shapes are similar to those of a four-panel plate with
intermediate simple supports.
The minimum value of the flexural rigidity oS to make the plate be considered as simply

supported at the stiffener depends on different vibration modes. For instance, as seen in Fig. 4
that when oS ¼ 50 the first vibration modes are very similar to that of a four-panel plate with two
intermediate simple supports, and #mw has little effect on the mode shapes in the range from 0 to 1.
However, as shown in Fig. 5, oS ¼ 64 is still not large enough for the second mode of the plate to
be considered as simply supported at the stiffeners.
r11;kl versus oS and tS: Ratios r11;kl of the first vibration mode of a four-panel square plate with

dS ¼ 0:01 and #mw ¼ 0:1 are plotted versus oS from 0 to 100 and torsional rigidity tS from 0 to 1 in
Fig. 6 for r11;22 and in Fig. 7 for r11;12; respectively.

ARTICLE IN PRESS

Fig. 4. r11;22 of the first mode of a four-panel square plate with dS ¼ 0:01 and tS ¼ 0:1: (a) r11;22 versus oS and #mw;
(b) mode shape, #mw ¼ 1; oS ¼ 0; r11;22 ¼ 1:00; (c) mode shape, #mw ¼ 1; oS ¼ 37; r11;22 ¼ 1:28; (d) mode shape, #mw ¼ 1;
oS ¼ 50; r11;22 ¼ 1:774:
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Fig. 5. r11;22 of the second mode of a four-panel square plate with dS ¼ 0:01 and tS ¼ 0:1: (a) r11;22 versus oS and #mw;
(b) mode shape, #mw ¼ 1; oS ¼ 0; r11;22 ¼ 1:12; (c) mode shape, #mw ¼ 1; oS ¼ 8; r11;22 ¼ 8:41; (d) mode shape, #mw ¼ 1;
oS ¼ 40; r11;22 ¼ 1:81; (e) mode shape, #mw ¼ 1; oS ¼ 42; r11;22 ¼ 1:00; (f) mode shape, #mw ¼ 1; oS ¼ 64; r11;22 ¼ 3:87;
(g) mode shape, #mw ¼ 1; oS ¼ 80; r11;22 ¼ 1:45:
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As shown in Fig. 6, for oSo10; both the flexural rigidity oS and the torsional rigidity tS have
little effect on r11;22: For 10ooSo50; both of oS and tS have dramatic effect on r11;22; especially
when 10ooSo20; a small increase of oS would result in a large increase of r11;22: When oS > 50;
the larger the torsional rigidity tS; the larger the ratio r11;22; while the change of oS does not affect
r11;22 much.
In Fig. 7, for oSo10; both the flexural rigidity oS and the torsional rigidity tS have little effect

on r11;12; this is similar to that in Fig. 6 for r11;22; which indicates that the first mode shape of the
four-panel plate changes little with the change of both oS and tS in the range of tSo1: For
10ooSo50; both oS and tS have dramatic effect on r11;12; especially when oSE28; a small
change of oS and tS would lead to a large change of r11;12: When oS > 50; ratio r11;12 increases
slightly with the increase of tS; while the change of oS does not affect r11;12 much.
r11;kl versus oS and dS: Figs. 8 and 9 show the ratios r11;kl versus oS from 0 to 100 and dS from 0

to 0.05 for the first vibration mode of a four-panel square plate with tS ¼ 0:1 and #mw ¼ 0:1: It is
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Fig. 6. r11;22 of the first mode of a four-panel square plate with dS ¼ 0:01 and #mw ¼ 0:1: (a) r11;22 versus oS and tS;
(b) mode shape, tS ¼ 1; oS ¼ 0; r11;22 ¼ 1:00; (c) mode shape, tS ¼ 1; oS ¼ 20; r11;22 ¼ 1:41; (d) mode shape, tS ¼ 1;
oS ¼ 50; r11;22 ¼ 2:49:
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observed that when dS ¼ 0; i.e., when the plate is perfectly periodic, r11;kl ¼ 1 for all oS: This is
expected—since, when there is no misplacement of the stiffeners, the plate is symmetric about the
stiffeners, the vibration mode deflections of the four panels have the same value and there is no
vibration mode localization. It is also observed that except for very small values of oS; the
misplacement of the stiffeners dS has a dramatic effect on the vibration mode localization of
the four-panel plate. The larger the misplacement dS; the more significant the vibration mode
localization.
It is also seen in Figs. 8 and 9 that when 10ooSo50; the effect of oS on the vibration

localization is most significant, especially for larger value of misplacement dS: On the other hand,
the change of the flexural rigidity oS has little effect on the first vibration mode localization when
oS > 50:
r11;kl versus dx and dy: The vibration mode indicator r11;22 of the first mode is presented in

Fig. 10 in terms of misplacement dx and dy from 0 to 0.05 for a four-panel square plate with
oS ¼ 20; tS ¼ 0:1; and #mw ¼ 0:1: It is observed that even a very small misplacement change
may significantly affect the vibration behavior of the plate, e.g., as seen in Fig. 10, when dy ¼ 0;
ratio r11;22 jumps from 1.59 for dx ¼ 0:035 to 3.54 for dx ¼ 0:05: By comparing the vibration
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Fig. 7. r11;12 of the first mode of a four-panel square plate with dS ¼ 0:01 and #mw ¼ 0:1: (a) r11;12 versus oS and tS;
(b) mode shape, oS ¼ 27; tS ¼ 0:80; r11;12 ¼ 5:14; (c) mode shape, oS ¼ 28; tS ¼ 0:91; r11;12 ¼ 5:51; (d) mode shape,

oS ¼ 30; tS ¼ 0:91; r11;12 ¼ 2:63:
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modes around the jumps of r11;22; it is observed that the jumps of r11;22 are due to the significant
change in the mode shapes.
r11;kl versus tS and #mw: To compare the effects of the torsional rigidity and the mass of the

stiffeners on the vibration mode localization behavior of the four-panel plate, r11;22 of the first
mode is plotted in Fig. 11 versus tS and #mw from 0 to 1 for a square plate with oS ¼ 20 and
dS ¼ 0:05: It is seen that in term of vibration mode localization, the mass #mw of the stiffeners has
more significant effect than the torsional rigidity tS when the flexural rigidity oS is not large.
However, when oS is so large that the plate can be considered simply supported at the stiffeners,
#mw has no effect on the vibration behavior of the plate, while the change of tS would affect the
structural behavior of the whole plate.
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Fig. 8. r11;22 of the first mode of a four-panel square plate with tS ¼ 0:1 and #mw ¼ 0:1: (a) r11;22 versus oS and dS;
(b) mode shape, dS ¼ 0:01; oS ¼ 0; r11;22 ¼ 1:00; (c) mode shape, dS ¼ 0:01; oS ¼ 18; r11;22 ¼ 1:39; (d) mode shape,

dS ¼ 0:01; oS ¼ 50; r11;22 ¼ 1:77:
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Summary: From the study of Figs. 3–11, it is observed that the misplacement dS and the flexural
rigidity oS of the stiffeners have a much more significant effect on vibration mode localization
than the torsional rigidity tS and the mass #mw in realistic ranges. Hence, it is reasonable to focus
on the effects of oS and dS in the vibration localization study.

3. Forced vibration localization using Galerkin’s method

In Section 2, the vibration mode localization of a uniform four-panel plate with four
edges clamped and two intermediate stiffeners as shown in Fig. 1 was studied using the
compound strip method. In this section, the forced vibration localization is investigated
using Galerkin’s method based on the mode shapes obtained by the compound strip method in
the previous section.
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Fig. 9. r11;21 of the first mode of a four-panel square plate with tS ¼ 0:1 and #mw ¼ 0:1: (a) r11;21 versus oS and dS;
(b) mode shape, dS ¼ 0:05; oS ¼ 0; r11;21 ¼ 1:02; (c) mode shape, dS ¼ 0:05; oS ¼ 23; r11;21 ¼ 6:85; (d) mode shape,

dS ¼ 0:05; oS ¼ 100; r11;21 ¼ 3:06:
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Suppose that the plate is subjected to a harmonic concentrated load P0 sinOt applied at the
center of Panel 11, i.e., point ðL1=2; b1=2Þ as shown in Fig. 1, in which P0 is a given constant with
the dimension of force and O is the circular frequency of excitation. For the thin elastic, isotropic
plate, the flexural deflection zðx; y; tÞ during vibration is governed by a linear partial differential
equation

D
@4z

@x4
þ 2

@4z

@x2@y2
þ

@4z

@y4

	 

þ rh

@2z

@t2
¼ P0 sinOtd x �

L1

2

	 

d y �

b1

2

	 

; ð3Þ

where d is the Dirac delta function.
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Fig. 10. r11;22 of the first mode of a four-panel square plate with oS ¼ 20; tS ¼ 0:1 and #mw ¼ 0:1: (a) r11;22 versus dx

and dy; (b) mode shape, dx ¼ 0:0005; dy ¼ 0:0005; r11;22 ¼ 1:03; (c) mode shape, dx ¼ 0:035; dy ¼ 0:0005; r11;22 ¼ 2:20;
(d) mode shape, dx ¼ 0:05; dy ¼ 0:05; r11;22 ¼ 5:27:
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The transverse deflection zðx; y; tÞ is assumed to be of the form

zðx; y; tÞ ¼ zcðx; y; tÞ þ zpðx; y; tÞ; ð4Þ

in which zcðx; y; tÞ is the complementary solutions, which satisfies the homogeneous equation (3)
with P0 ¼ 0; and zpðx; y; tÞ is a particular solution of Eq. (3). By using Galerkin’s method,
approximate expressions of zc and zp for the plate, which is in the undeformed state at t ¼ 0; can
be written as

zcðx; y; tÞ ¼
XK

m¼1

qc
mFmðx; yÞ sinomt; ð5Þ
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Fig. 11. r11;22 of the first mode of a four-panel square plate with dS ¼ 0:05 and oS ¼ 20: (a) r11;22 versus tS and #mw;
(b) mode shape, tS ¼ 0; #mw ¼ 0; r11;22 ¼ 6:61; (c) mode shape, tS ¼ 0; #mw ¼ 1; r11;22 ¼ 1:31; (d) mode shape, tS ¼ 1;
#mw ¼ 1; r11;22 ¼ 1:23:
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and

zpðx; y; tÞ ¼
XK

m¼1

qmðtÞFmðx; yÞ; ð6Þ

in which om is the mth circular natural frequency of the plate, Fmðx; yÞ is the associated mth
vibration mode obtained in Section 2, K is an integer chosen so as to achieve a satisfactory
accuracy, qc

m are constants to be determined by the initial conditions zjt¼0 ¼ 0; @z=@tjt¼0 ¼ 0; qmðtÞ
are functions of time t:
Substituting the particular solution (6) into the equation of motion (7), multiplying both sides

by Fnðx; yÞ; n ¼ 1; 2;y;K ; and integrating with respect to x from 0 to L and with respect to y
from 0 to b results in a system of coupled ordinary differential equations

rhA.qðtÞ þ DBqðtÞ ¼ f sinOt; ð7Þ

where

qðtÞ ¼ fq1ðtÞ; q2ðtÞ;y; qK ðtÞg
T; f ¼ P0fF1ðx0; y0Þ;F2ðx0; y0Þ;y;FK ðx0; y0Þg

T;

and the elements of the K � K matrices A and B are given by

amn ¼
Z L

x¼0

Z b

y¼0

Fmðx; yÞFnðx; yÞ dx dy;

bmn ¼
Z L

x¼0

Z b

y¼0

½r4Fmðx; yÞ�Fnðx; yÞ dx dy; ð8Þ

where r4 ¼ @4=@x4 þ 2@4=@x2@y2 þ @4=@y4:
As stated before, the free vibration mode Fmðx; yÞ sinomt satisfies the homogeneous equation

(3) with P0 ¼ 0; i.e.,

D½r4Fmðx; yÞ sinomt� þ rh
@2

@t2
½Fmðx; yÞ sinomt� ¼ 0;

or

r4Fmðx; yÞ ¼
rho2

m

D
Fmðx; yÞ: ð9Þ

Substituting Eq. (9) into bmn in Eq. (8) results in bmn ¼ rho2
mamn=D: Therefore, Eq. (7) can be

rewritten as

A.qðtÞ þ AWqðtÞ ¼
sinOt

rh
f; ð10Þ

in whichW ¼ diagfo2
1;o

2
2;y;o2

Kg: Multiplying both sides of Eq. (10) by A�1 leads to a series of
decoupled ordinary differential equations

.qmðtÞ þ o2
mqmðtÞ ¼ pm sinOt; ð11Þ

where pm is the mth element of vector A�1f=rh:
Non-resonant case Oaom: When Oaom; the general solution to Eq. (11) is

qmðtÞ ¼ qmð0Þ cosomt þ
’qmð0Þ
om

sinomt þ
pm

o2
m � O2

sinOt: ð12Þ
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If the plate is at rest when t ¼ 0; i.e., qmð0Þ ¼ ’qmð0Þ ¼ 0; Eq. (12) becomes

qmðtÞ ¼ dm sinOt; dm ¼
pm

o2
m � O2

: ð13Þ

Substituting the flexural deflection (4) into the initial condition @z=@tjt¼0 ¼ 0 leads to

qc
m ¼ �dm

O
om

: ð14Þ

The transverse displacement of the plate can then be written as

zðx; y; tÞ ¼
XK

m¼1

qc
mFmðx; yÞ sinomt þ sinOt

XK

m¼1

dmFmðx; yÞ: ð15Þ

To non-dimensionalize the formulation, two reference quantities are introduced. One is the
constant concentrated load Ph; which, when applied at the center, makes the center transverse
deflection equal to h for a one-panel simply supported rectangular plate with length L; width b;
and uniform thickness h: Ph is equal to Dh=ða0b2Þ; where a0 is a constant related to the ratio of L

and b and is given by Eq. (147) in Ref. [11]. The other quantity is the first natural frequency of this
one-panel simply supported plate given by

o0 ¼
p2ðL2 þ b2Þ

L2b2

ffiffiffiffiffiffi
D

rh

s
:

Employing the following non-dimensional quantities:

#P0 ¼
P0

Ph

; #O ¼
O
o0

; #om ¼ om �
b2

p2

ffiffiffiffiffiffi
rh

D

r
; #nm ¼

om

o0
¼ #om 1þ

b2

L2

	 
�1

;

#pm ¼
p2pm

bo2
0

; t ¼ t �
p2

b2

ffiffiffiffiffiffi
D

rh

s
; #dm ¼

p2

b
dm; x ¼

x

b
; Z ¼

y

b
; #z ¼

p2

b
z; ð16Þ

Eq. (15) can be written in a non-dimensional form as

#zðx; Z; tÞ ¼
XK

m¼1

1þ
b2

L2

	 

#O
#om

�
#pm

#O2 � #n2m
#Fmðx; ZÞ sin #omt

" #

þ sin 1þ
b2

L2

	 

#Ot

� �XK

m¼1

#pm

#n2m � #O2
#Fmðx; ZÞ; ð17Þ

where #Fmðx; ZÞ is the non-dimensional form of the mth vibration mode Fmðx; yÞ: It is noteworthy
that this research deals with plates without damping. If damping is considered, the first part of
Eq. (17), which depends on the initial conditions, will eventually vanish.
When Oaom; i.e., when #Oa#nn; the forced vibration response #z is finite as can be seen in

Eq. (17).
Resonant case O ¼ on: When O ¼ on or #O ¼ #nn; the four-panel plate is in resonance in mode n:

For man; the solution of Eq. (11) is given by Eq. (12). For m ¼ n; the solution of Eq. (11) is

qnðtÞ ¼ qnð0Þ cosont þ
’qnð0Þ
on

sinont �
pn

2on

t cosOt: ð18Þ
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Employing the initial conditions and the non-dimensional quantities in Eq. (16), the non-
dimensional transverse displacement of the plate is given by

#zðx; Z; tÞ ¼
XK

m¼1
man

1þ
b2

L2

	 

#O
#om

sin #omt� sin 1þ
b2

L2

	 

#Ot

� �( )
#pm

#O2 � #n2m
#Fmðx; ZÞ

þ
#pn

2#n2n
#Fnðx; ZÞ sin #ont� t � #on cos 1þ

b2

L2

	 

#Ot

� �� �
: ð19Þ

It can be seen in the last term of Eq. (19) that the deflection #zðx; Z; tÞ increases linearly with time t:
Since the plate is in resonance in mode n; the forced vibration response #zðx; Z; tÞ is dominated by
the nth mode when the time t is large, which implies that the response is in the shape of mode n:
Hence, the forced vibration localization is the same as the mode localization of mode n:

3.1. Numerical results

Numerical results of the response of a plate subjected to a harmonic concentrated load P0 sinOt

at the center of Panel 11 obtained by Galerkin’s method presented in this section are compared
with those obtained by a finite element method using STARDYNE. It is observed that the
dynamic responses obtained by these two methods agree very well. When plotted, the difference is
hardly visible except for near some of the peak deflections. The excellent agreement indicates that
Galerkin’s method is suitable for the analysis of forced vibration of the four-panel plates.

3.1.1. Forced vibration localization

The variation of the forced vibration response with a small misplacement of the intermediate
stiffeners is of interest. Similar to the analysis of vibration mode localization, the localization
phenomena in forced vibration of the four-panel plate shown in Fig. 1 may be characterized
by ratios #r11;kl of the maximum deflections of the centers of the four panels in a given time
period, i.e.,

#r11;22 ¼
j#zð11Þjmax

j#zð22Þjmax

; #r11;12 ¼
j#zð11Þjmax

j#zð12Þjmax

; #r11;21 ¼
j#zð11Þjmax

j#zð21Þjmax

;

where j#zðklÞjmax; k; l ¼ 1; 2; is the non-dimensional maximum deflection at the center of panel kl in
a specified period of time. If #r11;kl is close to 1, the maximum deflections in the two panels
compared are comparable; whereas when #r11;kl{1 or #r11;klc1; the maximum deflections in the
two panels compared are significantly different and deformation is confined or the vibration
is localized.
The value of excitation force #P0 does not affect the relative amplitude ratios #r11;kl owing to the

linearity of the system. Therefore, #P0 ¼ �0:01 is used in the analysis of forced vibration
localization in the remaining of this paper.
Special attention must be paid when selecting the period of time used to find j#zðklÞjmax: To

illustrate, in Fig. 12, the non-dimensional deflection #zð11Þ of the center of Panel 11 is plotted versus
the non-dimensional time t for a four-panel square plate clamped at four edges with oS ¼ 20;
tS ¼ 0:1; #mw ¼ 0:1; dx ¼ 0:025; dy ¼ 0:05; and various excitation frequencies #O: The first two
non-dimensional natural frequencies of the four-panel plate are #n1 ¼ 5:06 and #n2 ¼ 5:50:
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As observed in Fig. 12, when #O ¼ #n1; i.e., when the plate is in resonance in the first mode, the
deflection amplitudes of the forced vibration increase linearly with the increase of time. When the
excitation frequency is very close to one of the natural frequencies, i.e., when #O ¼ 5:05; the forced
vibration response is amplitude modulated. It is observed that j#zð11Þjmax occurs at a much larger
value of t for #O ¼ 5:05 than that for the non-resonant case when #O ¼ 2:5: Hence, a much longer
period of time must be taken to find j#zð11Þjmax when the plate is approaching the situation of
resonance. For the non-resonant cases, the non-dimensional time period t in Eq. (16) is chosen as
from 0 to 500 in the remaining of this paper unless specified.
Ratio #r11;22 of a four-panel square plate with oS ¼ 20; tS ¼ 0:1; and #mw ¼ 0:1 are plotted

as functions of the non-dimensional misplacements dx and dy ranging from �0:05 to 0:05 in
Fig. 13(a) for #O ¼ 5:0 and in (b) for #O ¼ 5:5: The first non-dimensional natural frequency for
perfect stiffener position dS ¼ 0:0 is 5:49: The roughness and the jumps and turns of the ratios
#r11;22 are due to the superposition of the various modes.
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Fig. 12. Forced vibration response of a four-panel square plate with oS ¼ 20; tS ¼ 0:1; #mw ¼ 0:1; dx ¼ 0:025;
dy ¼ 0:05: (a) #O ¼ #n1 ¼ 5:06; (b) #O ¼ 5:05; (c) #O ¼ 2:50:
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Fig. 13. #r11;22 of a four-panel square plate with oS ¼ 20; tS ¼ 0:1; #mw ¼ 0:1: (a) #O ¼ 5:0; (b) #O ¼ 5:5:

Z. Chen, W.-C. Xie / Journal of Sound and Vibration 280 (2005) 235–262254



It is seen in Fig. 13 that, when dx > 0; dy > 0; and except in the vicinity of those jumps, ratio
#r11;22 increases with the increase of the misplacements of the two intermediate stiffeners; in other
words, the larger the misplacements, the more significant the forced vibration localization. When
dx ¼ dy ¼ 0:0 and the excitation frequency is close to the first natural frequency 5.49, as seen in
Fig. 13(b), the ratio #r11;22 is very close to 1, which means that Panel 22 has the same magnitude of
response as Panel 11 where the dynamic load is applied.

3.1.2. Vibration reduction

By deliberately introducing disorder in the intermediate rib-stiffeners into the plate, the
magnitudes of vibration of some of the four panels may be reduced.
Ratios #r11;22 and #r11;21 ¼ #r11;12 of plates with L=b ¼ 1=1; oS ¼ 50; tS ¼ 0:1; and #mw ¼ 0:1 are

plotted as a function of #O from 0.5 to 7.0 in Fig. 14 for dS ¼ 0:0 and 0.03, respectively. Ratio #r11;12
is the same as #r11;21 because of the symmetry of the plate about x ¼ y: The first five non-
dimensional natural frequencies of the stiffened plates are given in Table 1.
It is noteworthy that the deflection at the exciting point zð11Þ is not necessarily the maximum

deflection of the whole plate. Whether or not the maximum deflection at the exciting point
j#zð11Þjmax is the maximum deflection of the entire plate depends on the value of the exiting
frequency #O and the combination of the misplacements dx and dy: It can be observed in Fig. 14
that j#zð21Þjmax ¼ j#zð12Þjmax gives the maximum deflection of the centers of the four plate panels when
#O ¼ 6:0 and dS ¼ 0:03; since #r11;21 ¼ #r11;12 is smaller than 1 while #r11;22 is larger than 1. When
#O ¼ 5:75 and dS ¼ 0:0; the ratios #r11;kl are all smaller than 1, which indicates that, among the
maximum deflections of the centers of the four plate panels, the maximum deflection at the
exciting point j#zð11Þjmax is the smallest instead of the largest. On the other hand, when #Oo5; i.e.,
when the exciting frequency is smaller than the first natural frequency of the stiffened plate,
#r11;klc1; i.e., j#zð11Þjmax is much greater than the other three maximum deflections, which means
vibration is strongly localized in Panel 11.
When dS ¼ 0:0 and #O approaching the natural frequencies shown in Table 1, ratios #r11;kl

are all close to 1, which indicates that the deflection responses at the centers of the four panels
have the same magnitude, i.e., vibration is not localized. The reason is that, for a perfect plate, all
of the vibration modes are symmetric about the stiffeners and the deflections of all panels of
the plate are the same. When the excitation frequency #O approaches one of the natural
frequencies, only the corresponding vibration mode is dominant in the forced vibration response
of the plate, and when the plate is in resonance, forced vibration localization is the same as mode
localization.
For vibration reduction in Panels 21 and 12, as can be observed in Fig. 14(b); when the

excitation frequency 1:2o #Oo5:9; #r11;21 ¼ #r11;12 of dS ¼ 0:03 is larger than that of dS ¼ 0:0; one
has better vibration reduction. However, when #Oo1:2; there is no significant vibration
improvement in Panels 21 and 12 by changing the positions of the stiffeners from their
perfect positions to dS ¼ 0:03: When 5:9o #Oo6:35; #r11;21 ¼ #r11;12 of dS ¼ 0:03 is less than 1,
meaning that the magnitudes of the vibration response in Panels 21 and 12 are larger than that in
Panel 11.
On the other hand, as can be seen in Fig. 14(a), when dS ¼ 0:03; ratio #r11;22 is always larger than

1, which indicates that the forced vibration response is always localized for all values of #O shown.
Furthermore, for all values of #O shown, ratio #r11;22 of dS ¼ 0:03 is always larger than that of
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Fig. 14. Vibration reduction of a four-panel square plate with oS ¼ 50; tS ¼ 0:1; and #mw ¼ 0:1; - - - - - -, dS ¼ 0:0; ——,

dS ¼ 0:03: (a) #r11;22; (b) #r11;12 ¼ #r11;21:

Table 1

Frequency comparison

#n1 #n2 #n3 #n4 #n5

dS ¼ 0:00 5.558 6.393 6.394 6.664 10.731

dS ¼ 0:03 5.319 6.313 6.464 7.174 10.473
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dS ¼ 0:0; especially when the excitation frequency #Oo5; which implies that by purposely
misplacing the stiffeners the forced vibration response in Panel 22 can be reduced.
One may hope that, by introducing another combination of the misplacements dx and dy; all the

three ratios #r11;12; #r11;21; and #r11;22 would be greater than 1 for larger #O value, or in other words,
the vibration would be mainly localized in Panel 11 for all #O: However, it has been found that this
is unfortunately impossible for a four-panel plate with only two intermediate rib-stiffeners. The
forced vibration localization is expected to be more significant for larger plates with more panels
and more misplaced rib-stiffeners, which will be the focus of future research.

4. Conclusions

In this paper, the compound strip method and Galerkin’s method are applied to analyze
vibration localization of four-panel rectangular plates with two intermediate stiffeners in two
orthogonal directions. It is found that this approach works well on both the free vibration and
forced vibration of plates. Although only the results of the case when all four edges clamped and
only two stiffeners are presented, the method has also been successfully applied to study the plates
with other boundary conditions and more stiffeners.
In the study of vibration mode localization, it is observed that a small disorder of the rib-

stiffeners may significantly affect the vibration mode localization of the whole plate. The mass of
the stiffeners has a more significant effect on mode localization than the torsional rigidity when
the flexural rigidity of the stiffeners is not large. However, when the flexural rigidity of the
stiffeners is so large that the plate can be considered as simply supported at the stiffeners, the mass
of the stiffeners has no effect on the vibration behavior of the plate, while the change of the
torsional rigidity would affect the structural behavior of the whole plate. On the other hand, it is
observed that the misplacement and the flexural rigidity of the stiffeners have a much more
significant effect on vibration mode localization than the torsional rigidity and the mass in
realistic ranges. Except for very small values of flexural rigidity of the stiffeners, the larger the
misplacement of the stiffeners, the more significant the vibration mode localization of the plate.
In forced vibration localization, when the plate is in resonance, only the resonant mode is

dominant in the forced vibration response, and the forced vibration localization is the same as the
mode localization of the resonant mode. It is found that the deflection at the point of excitation is
not necessarily the maximum deflection of the plate. It is also observed that, at some values of the
excitation frequency, the larger the misplacement of the stiffeners, the more significant the forced
vibration localization.
The theory of vibration localization is applicable to vibration reduction, the essence of which is

that a small disorder in the periodicity of structures will lead to a significant change in the mode
shapes and localization in the vibration responses. By deliberately introducing irregularity into the
stiffeners, the vibration of some of the panels of the plate may be reduced. Although it is desired
to reduce the vibration of all panels for all frequencies, this is not feasible for a plate with only two
rib-stiffeners. The forced vibration localization is expected to be more significant for larger plates
with more rib-stiffeners, which will be the subject of future research. A very important application
is to study localization of vibration propagation in large building floor systems so that design
guidelines can be formulated to reduce annoying vibrations floor systems due to human activities.
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Appendix A. Stiffness and mass matrices of compound strip method

The first paper on the finite strip method was presented by Cheung [12] on plate-bending
problems using a simply supported rectangular strip. The finite strip method has been proven to
be more efficient than the finite element method for certain problems, e.g., the analysis of plate
type structures. Puckett and Gutkowski [9] developed the compound strip method by extending
the finite strip method for the analysis of plates with transverse and longitudinal stiffeners or
column supports. The stiffness of the stiffeners and columns is accounted for by the direct stiffness
method.
In this appendix, the non-dimensional stiffness and mass matrices of a compound strip and an

individual stiffener are presented.

A.1. Stiffness and mass matrices of compound strip #Kij
mn and #Mij

mn

Consider a typical jth uniform strip of ith span of width lij ; length b; and thickness h with an
intermediate transverse stiffener as shown in Fig. 15. The edges y ¼ 0 and y ¼ b can be simply
supported or clamped. In this study, the in-plane displacements are neglected. The superscript ‘‘ij’’
indicates the jth strip of the ith span of a rectangular plate.
From the studies of Cheung [13], the out-of-plane displacement function is given by

zijðx; y; tÞ ¼
XN
m¼1

Fij
mðx; yÞe

iot

¼
XN
m¼1

½Cij
1 wij

m þ C
ij
2 y

ij
m þ C

ij
3 wið jþ1Þ

m þ C
ij
4 y

ið jþ1Þ
m �YmðyÞeiot; ðA:1Þ
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Fig. 15. A typical ijth finite strip with a transverse stiffener.
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where o is the natural frequency, wij
m; wið jþ1Þ

m ; yij
m; and yið jþ1Þ

m are the displacement parameters (mth
term of the Fourier series) of edges j and j þ 1; YmðyÞ is the boundary function, and

C
ij
1 ¼ 1�

3x2

l2ij
þ

2x3

l3ij
; C

ij
2 ¼ x �

2x2

lij
þ

x3

l2ij
; C

ij
3 ¼

3x2

l2ij
�
2x3

l3ij
; C

ij
4 ¼

x3

l2ij
�

x2

lij
:

According to Ref. [10], the total strain energy and kinetic energy of the compound strip shown
in Fig. 15 are Uij ¼ PUij þ TSUij ; and Tij ¼ PTij þ TSTij; respectively, where the scripts ‘‘P’’ and
‘‘TS’’ denote ‘‘Plate’’ and ‘‘Transverse Stiffener’’. The stiffness and mass matrices of the
compound strip are therefore given by

Kij
mn ¼ PKij

mn þ
TSKij

w;mn þ
TSK

ij
y;mn; Mij

mn ¼ PMij
mn þ

TSMij
w;mn þ

TSM
ij
y;mn; ðA:2Þ

in which the stiffness and mass matrices of the plate strip PKij
mn and PMij

mn can be found in
Ref. [13], the stiffness and mass matrices of the transverse stiffener in bending TSKij

w;mn;
TSMij

w;mn

and in torsion TSK
ij
y;mn;

TSM
ij
y;mn can be found in Refs. [9] and [10].

The non-dimensionalized dynamic equilibrium equations of the compound plate strip shown in
Fig. 15 are

ð #Kij
mn � m #Mij

mnÞ#d
ij
m ¼ 0; ðA:3Þ

where #dij
m ¼ f #wij

m;
#yij

m; #w
ið jþ1Þ
m ; #yið jþ1Þ

m gT; #wij
mn ¼ wij

m=b; #yij
m ¼ yij

m; m ¼ b4rho2=ðp4DÞ is the non-
dimensional frequency, D ¼ Eh3=½12ð1� n2Þ�; r and h are the mass density and thickness of the
plate, n is the Poisson ratio, E is Young’s modulus, #Kij

mn is the non-dimensional stiffness matrix for
the ijth compound plate strip given by

#Kij
mn ¼

#K
ij
1;mn

#K
ij
2;mn

#K
ij
3;mn

#K
ij
4;mn

#K
ij
2;mn

#K
ij
5;mn � #K

ij
4;mn

#K
ij
6;mn

#K
ij
3;mn � #K

ij
4;mn

#K
ij
1;mn � #K

ij
2;mn

#K
ij
4;mn

#K
ij
6;mn � #K

ij
2;mn

#K
ij
5;mn

2
666664

3
777775; ðA:4Þ

where

#K
ij
1;mn ¼ P #K

ij
1;mn þ 12 #kij

w;mno
j

TS þ 36 #k
ij
y;mnt

j
TS;

#K
ij
2;mn ¼ P #K

ij
2;mn þ 6#lij #k

ij
w;mno

j
TS þ 3#lij #k

ij
y;mnt

j
TS;

#K
ij
3;mn ¼ P #K

ij
3;mn � 12 #kij

w;mno
j

TS � 36 #k
ij
y;mnt

j
TS;

#K
ij
4;mn ¼ P #K

ij
4;mn þ 6#lij #k

ij
w;mno

j
TS þ 3#lij #k

ij
y;mnt

j
TS;

#K
ij
5;mn ¼ P #K

ij
5;mn þ 4#l 2ij

#kij
w;mno

j
TS þ 4#l 2ij

#k
ij
y;mnt

j
TS;

#K
ij
6;mn ¼ P #K

ij
6;mn þ 2#l 2ij

#kij
w;mno

j
TS � #l 2ij

#k
ij
y;mnt

j
TS;
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in which #lij ¼ lij=b; and

P #K
ij
1;mn ¼ 13

35
#lijZ2;mn þ

12

5#lij
Z1;mn þ

12

#l 3ij
Z0;mn;

P #K
ij
2;mn ¼ 11

210
#l 2ij Z2;mn þ nþ 1

5

� �
Z1;mn þ

6

#l 2ij
Z0;mn;

P #K
ij
3;mn ¼ 9

70
#lijZ2;mn �

12

5#lij
Z1;mn �

12

#l 3ij
Z0;mn;

P #K
ij
4;mn ¼ � 13

420
#l 2ij Z2;mn þ

1
5
Z1;mn þ

6

#l 2ij
Z0;mn;

P #K
ij
5;mn ¼ 1

105
#l 3ij Z2;mn þ

4
15
#lijZ1;mn þ

4

#lij
Z0;mn;

P #K
ij
6;mn ¼ � 1

140
#l 3ij Z2;mn �

1
15
#lijZ1;mn þ

2

#lij
Z0;mn;

and

Z0;mn ¼
1

b

Z b

0

YmðyÞYnðyÞ dy; Z1;mn ¼ b

Z b

0

Y 0
mðyÞY

0
nðyÞ dy;

Z2;mn ¼ b3
Z b

0

Y 00
mðyÞY

00
n ðyÞ dy;

#kij
w;mn ¼

Ymðb1ÞYnðb1Þb3

pl3ij
; #k

ij
y;mn ¼

Y 0
mðb1ÞY 0

nðb1Þb
3

30plij
;

o j
TS ¼

pðEIÞ j
TS

bD
; t j

TS ¼
pðGJÞ j

TS

bD
:

The non-dimensional mass matrix of the compound strip

#Mij
mn ¼

#M
ij
1;mn

#M
ij
2;mn

#M
ij
3;mn

#M
ij
4;mn

#M
ij
2;mn

#M
ij
5;mn � #M

ij
4;mn

#M
ij
6;mn

#M
ij
3;mn � #M

ij
4;mn

#M
ij
1;mn � #M

ij
2;mn

#M
ij
4;mn

#M
ij
6;mn � #M

ij
2;mn

#M
ij
5;mn

2
666664

3
777775; ðA:5Þ

where

#M
ij
1;mn ¼ *mP #M

ij
1;mn þ 36 #m

ij
y;mn;

#M
ij
2;mn ¼ *mP #M

ij
2;mn þ 3#lij #m

ij
y;mn;

#M
ij
3;mn ¼ *mP #M

ij
3;mn � 36 #m

ij
y;mn;

#M
ij
4;mn ¼ *mP #M

ij
4;mn þ 3#lij #m

ij
y;mn;

#M
ij
5;mn ¼ *mP #M

ij
5;mn þ 4#l 2ij #m

ij
y;mn;

#M
ij
6;mn ¼ *mP #M

ij
6;mn � 4#l 2ij #m

ij
y;mn;
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in which

P #M
ij
1;mn ¼

13#lij

35
; P #M

ij
2;mn ¼

11#lij

210
; P #M

ij
3;mn ¼

9#lij

70
;

P #M
ij
4;mn ¼ �

13#l 2ij

420
; P #M

ij
5;mn ¼

#l 3ij

105
; P #M

ij
6;mn ¼ �

3#l 3ij

420

#m
ij
w;TS ¼ p4

ðrAÞjTS

rhb
; #m

ij
y;TS ¼ p4

ðrJÞ j
TS

rhb3
*m ¼ p4Z0;mn þ #mij

w;mn:

A.2. Stiffness and mass matrices LS #Kij
mn and LS #Mij

mn

To derive the stiffness and mass matrices of a longitudinal stiffener, consider a stiffener of
flexural rigidity ðEIÞijLS and torsional rigidity ðGJÞijLS placed along the jth nodal line of the ith span.
The scripts ‘‘LS’’ stands for ‘‘Longitudinal Stiffener’’.
The stiffener may be considered as a beam element. The connecting nodal line for both the

stiffener element and the strip element should have the same deflection. From Eq. (A.1), the mth
deflection and rotation terms of the ijth nodal line are wij

mYmðyÞeiot and yij
mYmðyÞeiot; respectively.

Employing the same non-dimensionalization procedure as for the plate strip stiffness matrix
PKij

mn and the mass matrix PMij
mn; the non-dimensional stiffness matrix of the longitudinal stiffener

placed along the ijth nodal line becomes

LS #Kij
mn ¼

LS #Kij
w;mn 0

0 LS #K
ij
y;mn

" #
; ðA:6Þ

where

LS #Kij
w;mn ¼

Z2;mn

p
o j

LS;
LS #K

ij
y;mn ¼

Z1;mn

p
t j

LS; o j
LS ¼

pðEIÞ j
LS

bD
; t j

LS ¼
pðGJÞ j

LS

bD
;

and the non-dimensional mass matrix of the jth longitudinal stiffener is

LS #Mij
mn ¼

LS #Mij
w;mn 0

0 LS #M
ij
y;mn

" #
; ðA:7Þ

where

LS #Mij
w;mn ¼ #m

ij
w;LSZ0;mn;

LS #M
ij
y;mn ¼ #m

ij
y;LSZ0;mn; #m

ij
w;LS ¼ p4

ðrAÞ j
LS

rhb
; #m

ij
y;LS ¼ p4

ðrJÞ j
LS

rhb3
;

in which ðrAÞ j
LS is the mass per unit length and ðrJÞ j

LS is the torsional constant.
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